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Abstract

Muulti-representation reasoning processes often show a variety
of reasoning paths that can be followed. To anayse such
reasoning processes with specia attention for differences
between individuals, it is required (1) to obtain an overview
of the variety of possibilities and (2) to address navigation and
control within the reasoning process. This paper presents a
simulation model and anaysis for the dynamics of a
controlled reasoning process in  which multiple
representations play arole. Strategies to navigate through the
space of possible reasoning states are modelled explicitly, and
simulated. Simulation results are analysed by software tools
on the basis of formalised dynamic properties.

Introduction

Human reasoning is often considered a process proceeding
by accumulating a number of reasoning steps from start to
end. An underlying assumption is that such a process can be
analysed by studying each such step locally, in isolation
from the rest of the reasoning process. Many reports of
experimental research focus on one-trial-experiments where
the number of reasoning steps is limited to one or,
sometimes, at most two; e.g., (Rips, 1994; Johnson-Laird,
1983). However, a practical reasoning process often is not a
straightforward accumulation of isolated steps. First,
decisions to make a reasoning step may be not a local issue
at the time point of the decision, but depend on the history
and goals of the reasoning process as a whole. Second, often
a multitude of reasoning paths is possible; only some of
these actually reach the goal. Navigation and control in the
sense of making a coherent set of choices at different time
points to obtain one of the successful (and preferred
according to one’s own characteristics) paths is a nontrivial
issue. Third, during the process steps may be taken that lead
to a dead end, such that the reasoning process has to
reconsider these steps, leading to revision of the reasoning
path. These non-local aspects of a reasoning process require
specific capabilities beyond, for example, the capability to
locally apply modus ponens or modus tollens. Often some
form of global reasoning planning and control is performed.
Decisions to make or revise a specific reasoning step are
made in the context of such a reasoning plan, which also has
to be taken into account as part of a reasoning state.

In many cases the same information can be represented
in different manners (e.g., in arithmetic, geometric or
material form). Moreover, both internal (mental) and

external (e.g., written or drawn) representations may play a
role. The distinction between mental and external
representations is also made in, e.g., (Hegarty, 2002). As the
type of possible reasoning steps may be different for
different forms of representation, these differences of
representation have to be accounted for in different
reasoning states. In such cases the number of possible
reasoning states is not very small, and, as a consequence, the
number of possible reasoning paths, may be quite large.
Coherent controlled navigation involving non-local aspects
of decisions for reasoning steps is of major importance to
deal with such a large number of possibilities.

This paper reports analysis and simulation of controlled
multi-representation reasoning processes, in which the
issues put forward play an important role. An analysis
method for the dynamics of reasoning (adopted from Jonker
and Treur (2002)) is based on formal definitions of possible
reasoning states and traces, and dynamic properties of these
traces are specified in the Temporal Trace Language TTL.
This analysis method is supported by a software
environment that is able to check traces against specified
dynamic properties. For simulation the component-based
agent design method DESIRE is used. Traces generated by
execution of a DESIRE model can be directly used as input
of the analysis software environment.

Below, first the dynamic perspective on reasoning is
discussed in some more detail. Next, an example reasoning
pattern is introduced, and the first steps of an analysis are
made. The example multi-representation reasoning process
used to illustrate the approach put forward shows interaction
between material, geometric and arithmetic reasoning. The
example focuses on how to determine the outcome of
multiplications such as 23 x 36, possibly using external
arithmetic, geometric or material (based on Multi-base
Arithmetic Blocks (MAB) material; e.g., Booker et al. 1997,
English and Halford, 1995) representations. Third, the
design of the simulation model is presented. Various
simulation traces have been generated, of which one
example is briefly discussed. Fourth, a number of dynamic
properties for this type of reasoning are identified. These
properties have been checked for the generated simulation
traces. Finally the approach is summarised and the
contribution of the research presented in the paper is
discussed.



Reasoning Dynamics

Asin (Jonker and Treur, 2002), to formalise the dynamics of
a reasoning process, traces are used. A difference here is
that also material representations and for each representation
form an internal and an external variant is considered.
Reasoning traces are time-indexed sequences of reasoning
states over atime frame: the set of natural numbers. The set
of all possible reasoning states defines the space where the
reasoning takes place. Reasoning traces can be viewed as
trajectories in this space, for which every (reasoning) step
from one reasoning state to the next one is based on an
allowed transition. The set of proper reasoning traces can be
defined as the set of al possible sequences of reasoning
states consisting only of allowed transitions.

Reasoning States

A reasoning state formalises an intermediate state of a
reasoning process. The content of such a reasoning state
usually can be analysed according to different aspects or
dimensions. A reasoning state can include both internal
(e.0., specific mental representations) and external elements
(e.g., written or drawn notes). For example, part of the state
may contain an external material representation, another part
an external arithmetic representation, and yet another part an
internal geometric representation. Furthermore, as pointed
out in the Introduction, also control information has to be
taken into account in a reasoning state. Accordingly, the
reasoning state is structured as a composition of (i.e., atuple
of) a number of parts, indexed by some set 1. This index set
includes different aspects or views taken on the state, e.g., |
isthe set
{control, extmaterial, extgeometric, extarithmetic,
intmaterial, intgeometric, intarithmetic}.

The set of reasoning states rs can be characterised as a
Cartesian product rRs = [, RS, wherers; is the set of al
states for the aspect indicated by i. For example, RSextgeometric
may denote the set of al possible external (drawn)
geometric representations. This Cartesian product formalises
the multi-dimensional space where the reasoning takes
place. For areasoning state, which is avector s = (s); ;| ORS
in this space, the s; are called its parts.

Reasoning Steps. Transitions of Reasoning States

A transition from one reasoning state to another reasoning
state, i.e., an element <s, s > of Rs x Rs, formalises one
reasoning step; sometimes also denoted by s - s
Transitions differ in the set of parts that are involved. The
most complex transitions change al parts of the state in one
step. However, within stepwise reasoning processes, usually
transitions only involve a limited number of parts of the
dtate, e.g., one to three. In the current approach we
concentrate on this class of transition types.

For example, when a modification in the reasoning state
is made solely within an internal geometric representation,
only the interna geometric part of the state changes
(geometric reasoning step): intgeometric — intgeometric. AN
example of such atransition can be visualised asin Fig.1:

36 36
30 6 30 6

Figure 1 Visualised transition

Other types of transitions involve more than one part. For
example, if an external geometric representation is extended
on the basis of an internal geometric representation, then
two parts of the state are involved: the external geometric
arithmetic part and the internal geometric part: extgeometric x
intgeometric extgeometric. E.g., the external geometric
representation is extended or modified with results from the
internal geometric representation. If control information is
incorporated in the modelling approach the number of
involved partsis even higher, since every transition involves
the control part; e.g.. intarithmetic x control - intarithmetic OF
extgeometric x intgeometric x control - extgeometric.

Reasoning Traces

Reasoning dynamics results from successive reasoning
steps, i.e., successive transitions from one reasoning state to
another. Thus a reasoning trace or trajectory is constructed:
atime-indexed sequence of reasoning states (y)ur, Wwhere T is
the time frame used (the natural numbers). A reasoning trace
can be viewed as a trgectory in the multi-dimensional
spacers = [1; ;| RS Of reasoning states. Reasoning traces are
sequences of reasoning states subject to the constraint that
each pair of successive reasoning states in this trace forms
an allowed transition. A trace formalises one specific line of
reasoning.

Multi-Representation Reasoning Process

Experiences on using multi-representational reasoning
processes with children (8-9 years old) in classrooms have
been reported, e.g., by (Dekker et al., 1982), see aso
(Hutton, 1977). Also teaching quadratic equations can be
supported by such materialisations and visualisations; e.g.,
by (Bruner, 1968), pp. 59-63; see dso (Koedinger and
Teran, 2002) for further explorations of the idea to use
visualisations in pre-algebraic reasoning. The example
pattern may show a large number of transition types
involving one to three parts. The idea is that only ssimple
arithmetical steps are required. The more complicated steps
are performed via the external material or geometrical
representation. A number of basic skills are assumed. These
basic skills can be defined in the form of transitions as
described above. A variety of (part of the) possible
reasoning paths determined by such transitionsis depicted in
a simplified manner in Figure 2; here the focus lies on
transitions involving (both internal and external) arithmetic
representations, and switches between geometric and
arithmetic representations. For the sake of simplicity
material steps, and transitions between geometric and



material representations have been left out. The numbers
refer to basic skills. E.g., the transition labelled “4” refers to
skill bs4, i.e., partitioning a rectangle in non-overlapping
areas, based on a partitioning of its sides, and the transitions
labelled “7” refer to skill bs7, i.e., splitting a number in tens
and digits.
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Figure 2 Variety of reasoning paths

Simulation M odé€

The simulation model' is based on agent modelling
techniques, in particular the component-based agent
modelling approach DESIRE; cf. (Brazier et al., 2002). At
the highest level of abstraction, two components play a role
in the system, i.e., the reasoning agent (called Alan) and the
External World. Alan can perform actions and observations,
executed in the external world, and receive observation
results as input from the external world. After Alan
generates a certain action to be performed (e.g., draw a
rectangle with sides 23 x 36), this action is transferred to the
external world and executed there.

The result of the action (e.g., a rectangle with corners A,
B, C, D and sides 23 x 36 drawn on a piece of paper) will

A complete specification of the model (with clickable
components) can be found at www.cs.vu.nl/~wai/GTM/rmr/

occur, with a certain delay, within the external world.
Besides performing actions, Alan can pro-actively observe
the world. The agent does this by explicitly determining
what aspects of the world it is interested in; its observation
focus. This focus is then transferred to the external world,
which in return provides the corresponding observation
result. Figure 3 depicts an overview of the components of
the simulation model.
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Figure 3 Overview of the components of the simulation model

Reasoning Agent

The approach used in this paper assumes that for every
action a mental and a physical part can be distinguished and
modelled (e.g., imagining a rectangle with sides 23 x 36 vs.
actually drawing such a rectangle). Whilst the external
world is concerned with the physical parts of the actions,
everything that is represented within the agent is mental. To
be able to make a clear distinction between the two
concepts, a different notation is used for both types of
information, e.g., rectangle(A, B, C, D, 23, 36) denotes a
specific rectangle in the world, whereas entity(shape([]),
parameters(23, 36)) denotes the internal representation.
Internal representations can be created on the basis of an
observation, but also on the basis of internal reasoning.

The composition of the reasoning agent Alan is based on
the generic agent model as described in (Brazier et al.,
2002). Three of the generic agent components are used in
our model, namely World Interaction Management,
Maintenance of World Information and Own Process
Control. The other generic agent components were not
needed within this model.

World Interaction Management handles the interaction
with the external world, i.e.,, observation and action
performance. It interprets information from the world and
makes it available for relevant other components. Also it
prepares information on actions to be performed.

The task of the component Maintenance of World
Information is to maintain a (partial) world model, i.e., a
snapshot of the present world state. In this domain, this
world model is restricted to the observed information about
objects that the agent has manipulated itself, such as the
numbers it has written down. Moreover, since the agent does



not necessarily have to perform each intermediate step
physically, some imaginary world model must be
maintained as well. This model describes the world like it
would be after the physical execution of some steps, without
these steps actually being performed. As both models
contain information about a (possible) state of the world,
both are maintained by Maintenance of World Information.

According to the generic agent model, tasks of the
component Own Process Control are the processes the agent
uses to control its own activities (e.g., determining,
monitoring and evaluating its own goals and plans), but also
the processes of maintaining a self model. The way the tasks
are performed is described in detail in the next section.

Own Process Control

Own Process Control consists of four sub-components: Goal
Determination, Own Characteristics, Plan Determination
and Plan Refinement.

For the application in question, Goal Determination is a
relatively simple component. It contains information about
the initial multiplication problem the agent desiresto solve.

The component Own Characteristics contains a self-
model, which includes several aspects. In the first place, it
includes (self-)information on the basic skills that the
reasoning agent thinks to possess. Note that this does not
necessarily mean that the agent indeed has all these skills.
For instance, it is perfectly possible that the agent believes
to be able to apply the distribution law of arithmetic, whilst
during execution it turns out that it does not. Whenever a
certain skill hasfailed (i.e., the agent planned to use it, but at
the end, it could not), Own Characteristics revises the self-
knowledge of the agent by asserting that it does not have the
skill after all. Third, Own Characteristics is used to store the
agent’s profile with respect to its problem solving strategy
for the multiplication problem. Two aspects are represented:
(1) a list of priorities among the different representations
that can be used while solving the problem, e.g., ari-geo-mat,
and (2) to what extent steps in the reasoning process have to
be performed physically. This way, several types of agents
can be modelled, varying from those that write down every
step to those that write down nothing. As a final remark,
notice that, although DESIRE offers the opportunity to
dynamically add changes in the specification (and thereby
realise an open state space), this has not been done within
the current model.

Before actually solving the problem, the reasoning agent
makes an abstract plan (e.g., a particular navigation route
through Figure 2). Plan Determination is responsible for
this planning process. Its input consists of the agent’s own
goal and characteristics. Based on this information, and
knowledge about pre- and postconditions of the basic skills,
Plan Determination explores the entire reasoning process at
an abstract level. The pre- and postconditions are expressed
in an abstract way; e.g., they do not contain any numbers.
While planning, Plan Determination continuously matches
the current state of the explored plan against the
preconditions of all basic skills, in order to determine which

skills are applicable. It then uses its strategy profile in order
to select one of the applicable skills. Subsequently, the skill
is evaluated by adding its (abstract) postcondition to the
current state of the explored plan. This way, the component
constructs a complete list of steps to be performed, that
would solve the multiplication problem. Furthermore, the
component uses backtracking in situations where no more
basic skills are applicable. Finally, if no solution can be
found at all, this is also indicated. The sub-components of
Plan Determination will be described in the next section.
Abstract plans, generated by Plan Determination, are
transferred to the component Plan Refinement. This
component, which consists of the sub-components Plan
Execution Control, Precondition Acquisition Initiation and
Mental Action Execution, is responsible for the refinement
of the basic steps, i.e., it determines the specific mental and
physical actions associated to a basic step of the abstract
plan (e.g., it refines bs4 to bsam). Moreover, it executes the
detailed mental actions associated to the basic steps. This is
done by repeating the following activities. First, Plan
Execution Control selects the first step of the (remaining)
plan to be executed. Second, Precondition Acquisition
Initiation determines what observations have to be made to
provide the agent with the necessary information for the
application of the selected step. For instance, if the selected
step is to draw a rectangle, it is important to know the
dimensions. Third, as soon as this information has been
obtained, Mental Action Execution creates a mental image
of the result of the application of the mental action (with
instantiated variables, e.g., ‘a rectangle with sides 23 x 36°,
denoted by entity(shape([]), parameters(23, 36))). This mental
image is then stored within Maintenance of World
Information. After that, Plan Execution Control decides
whether to perform the associated physical action as well,
depending on the agent’s own characteristics. Then, the
physical action either is or is not executed (within the
External World component), after which the next step of the
plan is treated by Plan Execution Control. Finally, if the
agent is unable to perform an action that it had planned to do
because it lacks either the mental or the physical skill for
that action, notification with the name of the skill that failed
is transferred to Own Characteristics. As a consequence, this
latter component will revise its self-model, so that Plan
Determination can construct a new plan more adequately.

Plan Deter mination

Plan Determination consists of the components Plan
Maintenance, Step Determination, Step Effectuation and
Step Backtracking. Plan Maintenance keeps track of all
kinds of information concerning the ‘current’ state of the
explored reasoning process, such as the (abstract) steps that
have been applied successfully, those that have failed and
those that have not been applied yet. Sep Determination
determines the next step to be added to the current plan in
three phases. First, it determines which steps are currently
applicable, by matching the preconditions of abstract steps
against the current state of the exploration. Second, based on



the applicable steps and the agent's strategy profile, it
decides whether it will make an arithmetic, geometric, or
material step. And third, based on the chosen representation,
it will select one single step. The components responsible
for the three phases are called, respectively, Candidate Step
Generation, Selection Criteria Determination, and Step
Selection. Finally, the selected step is passed to Step
Effectuation. However, if, independently of the
representation, no steps are applicable, this failure is
indicated, so that the backtracking component can become
active. Sep Effectuation explores the execution of the
selected abstract step by adding the postcondition of the step
to the current state of the simulation. Sep Backtracking
becomes active whenever no more steps are applicable and
uses a standard backtracking algorithm.

Example Simulation Trace

Although many simulations have been performed, there is
only room to present (part of) one trace. The trace selected
uses geometric and arithmetic skillsto solve the problem.

strategy profile: geo-ari-mat
available abstract skills: all skills
available mental skills: all skills
available physical skills: all skills
represent physically: all steps

mental_representation(arithmetic, entity(shape("X*Y"), parameters(23, 36)))
plan([bs1, bs7, bs2, bs4, bs5, bs9, bs3, bs6, bs13, bs14])
is_represented_in_world(arithmetic, multiplication(23, 36))
mental_representation(geometric, entity(shape("[]"), parameters(23, 36)))
is_represented_in_world(geometric, rectangle(’A’, 'B’, 'C’, 'D’, 23, 36))
mental_representation(arithmetic, entity(shape("X=X1+X2"), parameters(36, 30, 6)))
mental_representation(arithmetic, entity(shape("X=X1+X2"), parameters(23, 20, 3)))

/* split 23 into 20 and 3; split 36 into 30 and 6 */
mental_representation(geometric, entity(shape("[]"), name(A11Y, dim_parameters(20, 30)))
mental_representation(geometric, entity(shape("[]"), name(A12}, dim_parameters(20, 6)))
mental_representation(geometric, entity(shape("[]"), name(A21Y, dim_parameters(3, 30)))
mental_representation(geometric, entity(shape("[]"), name(A22 J, dim_parameters(3, 6)))

/* define four area’s with sides 20x30, 20x6, 3x30, 3x6 */
mental_representation(geometric, entity(shape("[]"), name(A11Y, area_parameter(600)))
mental_representation(geometric, entity(shape("[]"), name(A12}, area_parameter(120)))
mental_representation(geometric, entity(shape("[]"), name(A21Y, area_parameter(90)))
mental_representation(geometric, entity(shape("[]"), name(A227, area_parameter(18)))

/* assign a number to each area */

mental_representation(arithmetic, entity(shape("V+W+X+Y=Z"), parameters(600, 120, 90,
18, 828)))

is_represented_in_world(arithmetic, addition_solution(600, 120, 90, 18, 828))

mental_representation(arithmetic, entity(shape("XX*YY=2ZZ"), parameters(23, 36, 828)))
is_represented_in_world(arithmetic, multiplication_solution(23, 36, 828))

The trace first contains a description of the characteristics of
the agent, then the arithmetic problem is mentally
represented and the plan is produced. Due to the strategy
profile of the agent, the plan shows as many basic geometric
skills as possible (this corresponds to the left part of Figure
2). Every step is represented both mentally and physically,
corresponding to the agent’s characteristics. Since the agent
has all skills both in abstracto and in concreto, no
backtracking was necessary either during plan determination
or plan execution.

Analysisin Terms of Dynamic Properties

Asin (Jonker and Treur, 2002), to specify properties on the
dynamics of a reasoning process, the tempora trace

language TTL is used. In short, in TTL it is possible to
express that in a given trace at a certain point in time the
reasoning state has a certain (state) property. Moreover, it is
possible to relate such state properties at different points in
time. For the case at hand, more than 70 of such dynamic
properties have been specified, varying from global
properties for the overall reasoning process to more local
properties. The idea is that part of these properties are of a
genera nature (i.e., they can be used to assess whether a
trace qualifies as a proper reasoning trace), whereas the
other properties are used to characterise the different types
of possible traces (i.e., they are used to identify individual
differences). A large number of automated checks have been
performed, to reveal which properties hold for which traces.

Global properties

As an example, the following (global) property of a
reasoning trace y is considered, which expresses that in a
trace al multiplication problems in two digits eventualy
will be solved without using any external geometric and
material representations.

GP1(extarithmetic)
at any pointintimet
if in the reasoning state in trace y at t an externa arithmetic
representation of a multiplication problem for numbers x and y <
100 is present,
then atime point t' >t exists such that in the reasoning statein y at t’ an
external arithmetic representation of a solution z of this

multiplication problem with z = x«y isincluded

and for all t* witht <t" <t’it holds that in the reasoning state in y at t"
no external geometric or material representation isincluded.

The formalisation of this property in TTL is asfollows.
Ot Ox,y <100 state(y, t, extarithmetic) |== multiplication_problem(x, y)
O 0O=tlz z=xvy &

state(y, t', extarithmetic) |[== multiplication_solution(x, y, z)

& Ot [t<t"<t' 0 [Jastate(y, t", extgeometric) |=/=a &
Oa state(y, t", extmaterial) |=/=a & ]]

Note that for simplicity no maximal allowed response time
has been specified. If desired, this can be simply added by
putting a condition v < r in the consequent with r the maximal
response time. Similarly, other variants of overall properties
can be specified, for example expressing that within the
trace al three types of externa representations have been
used, or no external representations at all.

Milestone Properties

Within the overall reasoning process a number of dynamic
properties can be defined that express whether the process
has reached a certain milestone; for example, to indicate that
a reasoning state was reached in which an external material
representation full with blocks in the areas occurs. Another
form of milestone property expresses that internally an
abstract plan was reached.

Local Properties

A large number of properties have been specified that each
characterise one reasoning step. For the sake of simplicity,
for the example reasoning process persistence of



representations in reasoning states over time is assumed. As
examples, two local properties are represented; one
representing a transition from intarithmetic to intgeometric
and one from intgeometric to intgeometric.

LP1 (intarithmetic-intgeometric)

at any pointintimet

if in the reasoning state in trace y at t an interna arithmetic
representation of a multiplication problem for numbers x and y
between 10 and 100 is present,

then  atime point t'>t exists such that in the reasoning state in y at t’ an
internal geometric representation of a rectangle ABCD with [AB| =
x and |JAD| =y is present.

LP4 (intgeometric-intgeometric)
at any pointintimet

if in the reasoning state in trace y a t an internal geometric
representation of arectangle ABCD is present with points P on AB
and Qon AD,

then  atime point t'>t exists such that in the reasoning statein y at t’ the
rectangle ABCD is partitioned into four areas A11, A12, A21, A22
by two lines PP//AD and QQ'//AB with P on CD and Q' on BC.

Relationships between Properties

During the analysis al so relationships between properties are
identified. For example, analysis shows that if the agent’s
strategy profile prefers arithmetic and the agent has the
necessary skills to solve the problem arithmetically, then
GP1(extarithmetic) holds.

Discussion

Analysis of the cognitive capability to perform reasoning
has been addressed from different areas and angles. Within
Cognitive Science, the two dominant streams are the
syntactic approach (based on inference rules applied to
syntactic expressions, as common in logic), eg., (Rips,
1994), and the semantic approach (based on construction of
mental models); eg., (Johnson-Laird, 1983). In
experimental work for these approaches reasoning processes
usually are studied by focussing on reasoning steps in
isolation, by means of one-trial experiments. More extensive
reasoning processes involving a number of steps that are
tuned to each other require coherent controlled navigation.
The current paper reports analysis and simulation of such a
reasoning process.

The analysis method for the dynamics of reasoning
processes used in this paper was adopted from (Jonker and
Treur, 2002) and validated on the basis of reports from
experiments with 8-9 year old children in classrooms in the
Netherlands (Dekker et al., 1982). A similar report has been
made by (Hutton, 1977). The current paper shows how an
analysis of these dynamics can be made using traces
consisting of sequences of reasoning states including control
information over time to describe controlled reasoning
processes. It is shown for the example reasoning pattern,
how characterising dynamic properties can be identified.
Furthermore, the agent modelling approach DESIRE has
been used to implement a simulation model, and other
software tools have been used to automatically check which
dynamic properties hold for which simulated traces. In

addition, these software tools can be used to check which
properties hold for empirical data, thereby supporting the
comparison of human reasoning with simulated reasoning.
The variety of dynamic properties specified and the variety
of traces simulated provides an overview for the individual
differences between subjects that have been observed while
solving multiplication problems. For example, using our
formalisation those with an emphasis on external arithmetic
representations are neatly distinguished from those who use
external material representations where possible. In the
analysis the notion of reasoning strategy was addressed,
incorporating such differences in skill and preference. Due
to the compositional structure of reasoning state it was not
difficult to extend a reasoning state with a component for
control information.

Further experiments will be conducted, in which also a
focus is more explicitly on the control of the reasoning. For
example, are subjects able to explain why at a point in time
a trandation to a geometric representation is made? Are
think-aloud protocols involving control information a
reliable source of further analysis? In addition, future work
will explore the possibility to reuse the current simulation
model in other cognitive domains.
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